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Abstract

Nano-systems can help penetrate or absorb cosmeceuticals actives within
epidermal layers and/or in the dermis in a controlled way to achieve burst
or/and sustain release of actives. A variety of nanomaterials have been
developed and used in cosmetics. However, not all nano-systems are
thermally, chemically or physically stable and/or safe to use on the skin.
In principle, the actives should effectively reach either the epidermis or
dermis depending on the skin indication but should not enter the blood
stream and further affect vital organs. The global regulatory agencies are
trying to work together to find suitable criteria to control the use of nano-

systems in cosmetics and increase consumer awareness.

The present review discusses recent development in nanomaterials that
can find potential applications in cosmetics, along with their toxicity and

regulatory issues.
Introduction

Nano-systems (1-100 nanometer (nm)), developed using variety
exhibit
electromagnetic and optical properties and potential biomedical and

of production methods, size-dependent physiochemical,
cosmetic applications [1-12]. Due to its small size, nanoparticles exhibit
high quantum size effects (particularly in metals such as gold and
semiconductors such as ZnO) and increased surface area to volume
ratio which enhances optoelectronic or sensory properties [1-12]. These
enhanced size-dependent optoelectronic or sensory properties [1-12]
make nanoparticles a promising and next generation materials for the
use in cosmetics. Cosmetic companies are using both nanoparticles and
nanosystems to achieve or enhance following properties of the cosmetic
product development: (i) solubilise insoluble or partially soluble actives,
(ii) provide stability to actives, (iii) provide better UV protection, (iv)
controlled delivery of actives across the epidermis and/or dermis, (v)
provide long-lasting sustainable effects (such as moisturisation, anti-
aging, etc.), (vi) control color and fragrance, (vii) transparency, and (viii)
a quality finish.

Nanoparticles exhibit different or better optoelectronic or sensory
properties than large-scale particles [1-12] and that’s why they are used
in cosmetics. The top 10 claims made by nano-cosmetic products are

given in Table 1 [13]. These claims show that consumers need cosmetic

products that can provide both instant and long-lasting, sustainable effects
for skin indications (anti-aging and brightening) using nanotechnology

and natural actives.

The human skin is a natural protective barrier against external
mechanical, chemical, microbial and physical stimuli [14]. The large
surface area of the skin with a diversified spatial microstructure provide
different ways to achieve the transdermal cosmeceuticals delivery. The

skin is composed of four distinguishable layers: Stratum corneum (SC),

Table 1: Top 10 claims made for nano-systems in cosmetic products

No. Claims AS A % OF TOTAL

NANO LAUNCHES
1 | Moisturising/Hydrating 46
2 Botanical/Herbal 45
3 Long Lasting 28
4 Vitamin/Mineral Fortified 28
5 | Time/Speed 22
6 Antiaging 20
7 | Antioxidant 20
8 Brightening/Illuminating 18
9 UV-Protection 17
10 | No Additives/Preservatives 13
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epidermis, dermis and subcutaneous connective tissue. The SC, the
outermost layer of the skin, is comprised of a 10-15 pum thick matrix of
dehydrated and dead keratinocytes that are embedded in highly ordered
lipid layers, and serve as a protective barrier against the entry of external
entities [15]. The next skin layer, the epidermis, is approximately 100-
150 pm thick and comprised of multiple layers of keratinocytes and other
types of cells followed by the dermis layer, containing a network of blood
capillaries, lymphatic vessels and nerve endings. The subcutaneous tissue
(also known as hypodermis) resides below the dermis layer, is composed
of loose textured, white, fibrous connective tissue with intermingled fat
and elastic fibres [16].

Micro and macromolecules can penetrate the skin through three main
pathways (showed by red colors in Figure 1): (1) The intercellular pathway
- through the lipid matrix occupying the intercellular spaces of the
keratinocytes, (2) the transcellular or intracellular pathway - through the
keratinocytes, and (3) the transappendageal pathwayor follicular delivery-
across hair follicles, sebaceous glands and sweat glands [17]. Actives
smaller than 500 kDa, with sufficient oil solubility and high partition
coefficients, can be absorbed into the skin. However, large molecules with
a molecular weight of more than 500 kDa cannot pass the cutaneous skin
barrier [17]. Chemical enhancers such as fatty acids, surfactants, esters,
alcohols, polyalcohols, terpenes, and phospholipids are sometimes used to
enhance the active’s (mostly for more than 500KDa) transdermal delivery
[16-19]. In addition to the size of actives, hydrophobicity of actives [20],
and a melting point of less than 200°C can restrict the transdermal
delivery [21]. The topical delivery of actives is used to treat local skin
conditions whereas transdermal drug delivery helps the delivery of actives
through the skin layers into systemic circulation. Topical or transdermal
delivery [20] has several advantages over the oral and intravenous dosage
forms, such as prevention of first pass metabolism, minimization of pain

and controlled release of actives to avoid local toxicity of actives [21].
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Alternatively, some of the devices such as microneedles, jet injectors,
iontophoresis, ultrasound, electroporation, laser radiation and skin
abrasions are used to enhance the skin penetration of actives that are
above 500KDa in size [22]. However, some of these devices have their

consumer compliance issues.

Nanocarriers may help solve some of the above-mentioned issues of devices
by fluidizing the stratum corneum as a function of size, shape, surface
charges, and hydrophilicity-hydrophobicity balance of nanoparticles
while carrying actives across the skin layers [21].

Nano-Systems Used in Cosmetics

A list of some of the commonly used nano-systems [23-48] in cosmetic
formulations is compiled in Table 2. Two main functions of these nano-
systems are to encapsulate the actives and transport them across the skin
barriers. Most of the nano-systems mentioned in Table 2 provide control
over shape and size of encapsulating core and chemical composition of the
shell [23,24]. Most of these nano-systems provide a finite size nanocore
to encapsulate mostly the hydrophobic actives and then disperse or
solubilised them in aqueous formulations. These nano-systems can be used
to encapsulate variety of cosmeceuticals (herbal extracts, nutraceuticals,

etc.) and fragrances, stability of actives and their control release.

Figure 2 depicts schematics of (a) 2-dimensational (conventional)
liposomes, (b) 3-dimensional (conventional) liposomes, (c) Transfersomes,
(d) Cubosomes, (e) “Somes” characteristics, (f) W/O nanoemulsion
and (g) Nanocapsule. Liposomes [23,24] have been further modified
chemically to form transfersomes [25], ethosomes [26], niosomes [27,28],
invasomes [29,30], and ufosomes [31] by researchers. With an addition
of a surfactant, deformable vesicles are formed which can be helpful
while penetrating through skin layers without breaking the vesicle and
releasing the entrapped actives. Transfersomes can be used in many types
of cosmetic products such as anti-acne to transfer photosensitive retinoids
without affecting the stability of retinoids. Niosomes are made by adding
non-ionic surfactants and cholesterol to achieve the lipidic delivery
of hydrophobic (cosmetic) actives. Niosomes and Ufosomes (made
form fatty acids) may be used in cosmetic products for the delivery of
hydrophobic antioxidants such as vitamin E to the lipids to stabilise lipids.
Both ethosomes and evasomes contain alcohol and can be used for dermal
delivery of actives and may find potential applications in antibacterial
(e.g. anti-acne) products and leave-off cosmetics such as cleansers. Bicelle
[32], cubosomes [41,42], nanocapsules [36,37] and nanoemulsions [33-
35] are mostly made from surfactant assemblies. These systems may find
applications in the low viscous cosmetic products such as serums or toners
for skin whitening, anti-aging, sunscreens, etc. Nanocapsules exhibit a
thick polymer shell which can help protect actives from light or chemicals.
Nanocrystals are made from aggregates of several hundred to tens of
thousands of atoms and combine into a “cluster” of size between 10-400
nm. These can be used for concealers and scrubs because nanocrystals can
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Table 2 : Nano-systems and their characteristics

Nano-Systems Characteristics Reference

Liposome/Vesicles Multi-walled systems with choice of encapsulating actives depending on the active’s | 23,24
solubility. Different types: Transfersomes®, Ethosomes, Niosomes, and Bicelles.

Transfersomes® Made up of phospholipids supplemented with single chain surfactant with a high radius of | 25
curvature which acts as edge activators to provide vesicle elasticity and deformability

Ethosomes Contains phospholipids, ethanol and water. Soft and malleable novel lipid carriers. 26

Niosomes Formed mostly by non-ionic surfactant (of the alkyl or dialkyl polyglycerol ether class) and | 27,28
cholesterol is incorporated as an excipient.

Invasomes Composed of unsaturated phospholipids, small amounts of ethanol and terpenes, and water. | 29,30
More efficient in delivering highly lipophilic and hydrophobic drugs into the skin than other
“somes”.

Ufasomes Fatty acid vesicles 31

Bicelles Spherical micelles and discoidal micelles and two-dimensional network of branched | 32
flattened cylindrical micelles.

Nanoemulsions Dispersions of nanoscale droplets of one liquid within another, metastable systems, smaller | 33,34,35
particle size provide higher stability and better suitability to carry active ingredients.
Increases the shelf life of the product.

Nanocapsules Made of a polymeric capsule surrounding an aqueous or oily core; decreases the penetration | 36,37
of UV filter octyl methoxycinnamate in pig skin when compared with conventional
emulsions.

Nanocrystals Aggregates of several hundred to tens of thousands of atoms and combine into a “cluster” of | 38,39
size between 10-400 nm.

Dendrimers Star-shaped, multi-functional, unimolecular, monodisperse, micellar nanostructures, | 40
approximate 20 nm, a well-defined, regularly branched symmetrical structure and a high
density of functional end groups at their periphery. Can load large amounts of drugs/actives
covalently or ionically or by physical encapsulation in voids.

Cubosomes Formed by the self-assembly of liquid crystalline particles of certain surfactants when mixed | 41,42
with water and a microstructure at a certain ratio. Discrete, sub-micron, nanostructured
particles of bi-continuous cubic liquid crystalline phase. Offer a large surface area, low
viscosity and can exist at almost any dilution level. They have high heat stability and can
carry hydrophilic and hydrophobic molecules.

Bucky balls Buckminster fullerene, C60, approximately 1 nm diameter. A potent scavenger of free | 43,44
radicals. Used as an active ingredient for wrinkle-care cosmetics.

Lipid nanoparticles: Oily droplets of lipids which are solid at body temperature and stabilized by surfactants. | 45,46

and NLCs Used for the controlled delivery of cosmetic agents over a prolonged period of time and
improve the penetration of actives into the stratum corneum. Efficient in skin hydration
than a placebo. UV-resistant.

Nano-inorganic  (titania, | Zinc oxide and titania used as sun-block in sunscreen. Gold and silver nanoparticles have | 47,48

zinc oxide, etc.)

antibacterial properties.
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provide good abrasions and incorporate actives within clusters which can

be released upon smearing or spreading of cosmetic products on the skin.

As seen above, with control over the chemistry the shell can be made
flexible or hard. The soft and elastic structure will help flexibility while
entering through the skin microstructure [25,26,31,32,38,39]. Some
of the structures are formed by self-assembly [38,39,41,42] which may
spread upon the application of cosmetic products on the skin. Some of
these structures can encapsulate hydrophilic and hydrophobic actives
[31,32,38,39] and encapsulate chemical enhancers such as ethanol and
terpene [29,30] to enhance efficient delivery of actives through the skin.
Furthermore, some structure like solid lipid nanoparticles (SLNs) and
nanostructure lipid carriers (NLCs) can provide prolonged delivery
of actives [45,46] to the skin. SLNs and NLCs can be used in multiple
cosmetic products including sunscreens. However, their thermal stability
may be an issue.

Star-shaped dendrimers [40a,b] are multi-functional, unimolecular,
monodisperse, micellar nanostructures, and approximately 20 nm in
size. Additionally, they exhibit a well-defined architecture, regularly
branched symmetrical structure and high density functional end
groups at their periphery, and can load large amounts of drugs/actives
covalently, ionically or by physical encapsulation in voids. Figure 3 shows
the dendrimer with its different active-loading modalities [40b]. Figure
3 depicts GO-G4 as dendrimers generations and drug (actives) traps

within voids and chemically bonded at the periphery. Dendrimers can
find potential applications in the development of antiwrinkle and skin-
whitening cosmetic products. Inorganic nanomaterials such as TiO, and
ZnO [77b] act as UV blockers and antimicrobial agent [77c]. In addition
to sunscreens, inorganic nanomaterials may find potential applications
anti-acne products where metal nanoparticles may kill bacteria to treat

acne.

Drug or

Figure 3

BAOJ Nanotech, an open access journal

Volume 3; Issue 3; 018



Citation: Prashant D Sawant (2017) Nano-systems for Cosmetic, and their Nanotoxicity and Regulatory Issues.

BAOJ Nanotech 3: 18.

Page 5 of 11

Fullerene (1nm) are a potent scavenger of free radicals and are used as an

active ingredient for wrinkle-care in antiaging cosmetics [43,44].

Nano-systems can also be made multi-functional to impart more than
one function of delivering actives to the skin. In addition to delivering
actives across the skin barrier, nano-systems can provide moisturisation,
improving skin elasticity or decrease the wrinkle depth and reduce
toxicity. A few such examples are described below.

Manjula et al. [49] have evaluated the efficacy of new topical nanoparticles
oflow molecular nano-hyaluronic acid (50 kDa HA) to treat wrinkles, skin
hydration, and skin elasticity in humans. Authors found an improvement
of the wrinkles depth (reduction of up to 40%), and skin hydration
(increased up to 96%) and skin firmness and elasticity (improved by up to
55%) at the end of the eight-week trial. Recently Xia et al. [50] and Huang
et al. [51] have demonstrated that nanoparticles from English Ivy can
be a natural alternative to the metal oxides for UV protection, and may
reduce the nanotoxicity of metal oxides. Kirilov et al. [52] have developed
organogel nanoparticles with encapsulated UV-Bblocking agent to protect
the UV-B agent, and develop a water-resistant sunscreen. Felippi et al. [53]
have encapsulated actives, coenzyme Q10, retinyl palmitate, tocopheryl
acetate, grape seed oil and linseed oil in 140nm particles, and developed
a multifunctional nanoparticle suspension that is safe (not irritant,
sensitizing and comedogenic and photo-toxic) to use in cosmetics for

increasing hydration and reducing wrinkles.

In addition to structures and chemistry of nanoparticles, the size, shape
and charge on nanoparticles can be used for the delivery of actives through
the skin. However, the size, shape and charge, and structure and chemical

composition can also lead to toxicity issues [21,56b].
Nano-Toxicity

A growing number of scientific publications have demonstrated that
nanomaterials currently used in sunscreens, cosmetics and personal care
products may cause serious toxicity risks for human health [54-56a,b].
Recently Fu et al. have suggested that that despite the unique properties
of nanomaterials have been extensively exploited in products, but their

cytotoxic and genotoxic data is not fully studied so far [56b].
Some Mechanisms of Nanotoxicity

Adenosine triphosphate is synthesized in the mitochondria of cells by
reduction of molecular O, to water through a sequence of coupled proton
and electron transfer reactions. However, a small percentage of the O,
is not reduced completely, form superoxide anion radicals and other
oxygen-containing radicals. ROS are by-products of cellular oxidative
metabolism which mostly occurs in the mitochondria [56b]. In addition
to cellular oxidative stress, transition metals such as copper and iron can
also participate in one-electron oxidation-reduction or redox reactions to
form ROS [56b]. Additionally, some of nano-metal oxides can enhance
ROS through Fenton reaction, Fenton-like reactions, or the Haber-

Weiss cycle reaction and yield hydroxyl radicals (¢ OH) from H,0,, and
superoxide anion radicals (#0O-,). The ®OH exhibits the highest one-
electron reduction potential of all the physiologically relevant ROS, and
is extremely reactive with almost every type of biomolecule, including
proteins and nucleic acids [56b]. Both nano-metal oxides and nano-metals
can further induce oxidative stress, DNA damage, and unregulated cell
signaling, and cell motility [56b]. Hydroxyl radicals cannot be blocked by
antioxidant enzymes such as superoxide dismutases (SODs), peroxidases,

and catalases and can damage DNA quickly [56b].

Size, shape and crystal forms also influence the toxicity to the human skin
cell. Toxicity increases as the particle size decreases. 25 nm TiO, particles
induced more photocytotoxicity to human keratinocytes than high size (50
- 325nm) TiO, particles and, induced greater cell damage. Additionally,
the anatase form of nano-TiO, has induced higher photocytotoxicity than
the rutile form [56¢].

Carbon nanomaterials such as Fullerenes become phototoxic upon
exposure to visible or UV light irradiations which excite the fullerene
surface. The excited triplet-state fullerenes transfer energy to molecular
oxygen to form singlet oxygen, and then transferan electron to induce
superoxide anion radicals. Superoxide anion radicals induce lipid
peroxidation, leading to cytotoxicity [56d]. However, the modification of
the fullerene surface by attaching one or more malonyl groups can yields

derivatives of fullerenes possessing antioxidant activity [56d].
Nanoparticle Induced Toxicity

Nanomaterials can penetrate the skin [57-58] and induce cellular oxidative
stress, inflammatory cytokine production, DNA mutation and even cell
death [54]. They can easily penetrate the human bodyor cross biological
membranes, [59] enter the blood stream, and then into vital organs such
as the heart, kidney, liver and spleen [54]. Further, nanomaterials can be
transported within cells and be taken up by mitochondria [60-61] and
the cell nucleus [62a], where they can cause major structural damage.
Moreover, Dechsakulthorn et al. have showed that both ZnO and TiO,
nanoparticles (50 nm - 70 nm) are sensitive to human skin fibroblast
[62b]. The small size of nanoparticles results in a large surface area per
unit volume of particles which in-turn can enhance chemical reactivity
and increase the production of reactive oxygen species (ROS) [63]. Both
metal oxide nanoparticles [64-68] used in sunscreens and cosmetics, and
carbon fullerenes [69] used in face creams and moisturisers can induce
ROS. ROS and free radical production is one of the primary mechanisms of
nanotoxicity which can lead to oxidative stress, inflammation, and damage
to proteins, membranes and DNA [70]. Titanium dioxide nanoparticles
as compared to large particles that are used in sunscreens, cosmetics and
personal care products can cause far greater cell damage. Subcutaneously
injected 2-5 nm TiO, have resulted in a moderate inflammatory response
in rats [71]. 500nm TiO, particles can break DNA strands where as
20nm TiO, can destroy super coiled DNA completely, even at low doses
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in the absence of UV [72]. Additionally, TiO, nanoparticles can produce
ROS in human brain cells [73]. Moreover, TiO, nanoparticles can cause
cell death in cultured neurons at low concentrations (>20ppm) after 24
hours of exposure [74]. In addition to the ROS production, both TiO,
nanoparticles and nanoparticles of zero-valent Fe can influence adenosine
triphosphate levels and mitochondrial depolarization [75]. Photo-
activated TiO, nanoparticles and zinc oxide have caused oxidative damage
to DNA in cultured human fibroblasts [88]. Similarly, photo activated TiO,
nanoparticles have caused oxidative stress mediated toxicity in in-vitro
skin fibroblasts and nucleic acids [89] and in human colon carcinoma cells
[90]. Therefore, TiO,or ZnO nanoparticles from cosmetic products should

not enter the blood circulation with potential of reaching vital organs.

Silver nanoparticles are known to be highly toxic to pathogens and
bacteria [76] and are widely used in toothpaste, soaps and face creams,
antimicrobial formulations and wound dressings [77a]. However, silver
nanoparticles are highly toxic to mammalian cells in-vitro, even in the
absence of photo-activation. The exposure of low concentrations of silver
nanoparticles to rat neuronal cells [78], mouse germline stem cells [79a],
rat liver cells (all in-vitro) [80] has resulted in the reduction of the cells
size and shape, mitochondrial dysfunction and increased oxidative stress.
Additionally, gold nanoparticles (40 nm and 80 nm) with different surface
coatings (branched polyethyleneimine, lipoic acid and polyethylene
glycol) showed that the surface chemistry (particularly polyethyleneimine)
can affect the cellular uptake of gold nanoparticles, and induce the
modulating expression of genes involved in DNA damage and repair, heat
shock response, mitochondrial energy metabolism, oxidative stress and
antioxidant response, and endoplasmic reticulum stress and unfolded
protein response cascades [79b].

Fullerenes are used in some face creams and moisturisers and their
toxicity is still not completely understood. However, carbon fullerenes
(buckyballs) have been found to cause brain damage in fish [81], kill water
fleas and have bactericidal properties [82]. Additionally, low levels of
water soluble fullerenes are toxic to human liver cells, carcinoma cells and
dermal fibroblasts in-vitro [83]. Fullerene-based amino acid nanoparticles
can reduce the viability of human epidermal keratinocytes and induce a
pro-inflammatory response [84]. Toxicity of fullerene is found to be a
function of surface structure [85] and the degree of aggregation (due to
different solvents or emulsion bases) [86]. Photo-activation of fullerenes
C60 and C70 in the presence of biological reducing agents (e.g. reduced
form of nicotinamide adenine dinucleotide, NADH) resulted in cleavage
of super coiled DNA in-vitro and induced ROS [87]. Thus, almost all types
of nanomaterials used in sunscreens and cosmetics can be harmful as they

may produce ROS and free radicals upon UV light exposure [54].

The broken skin is acompromised protective barrier and particles of up to
7,000nm can penetrate through the skin layers to reach the living tissues
[54]. Skin conditions like acne, eczema or shaving wounds are likely to

enable the uptake of nanoparticles. Therefore, further research is required

to establish the relationship of the damaged skin conditions, including sun
burn and the uptake of nanomaterials, from sunscreens and cosmetics
[91].

The choice of vehicles (serums, gels, cream, penetration enhancers, etc.)
can also influence the penetration of nanomaterials through the skin. This
may be the reason that there are conflicting results about the penetration
of metal oxides and fullerenes in the skin (when used in sunscreens) and
their toxicity profiles [92-101].

Regulatory Issues with Nanomaterials

There are concerns about some of the nanomaterials that can cause
potential ill-effects to humans and environmental health and safety
risks. Some efforts have been undertaken internationally to harmonize
approaches to address definitional issues and safety concerns related to

the use of nano-systems in cosmetic products [102].

Australia, USA, and European union [103-105] are assessing the safety
of cosmetic products utilising nanomaterials. New Zealand is setting
up rules related with specific mention of nanomaterials, and labelling
requirements in cosmetic products containing nanoparticles [106].

The organisation, Friends of the Earth Australia, has found foundations
and concealers containing nanoparticles being sold by 10 top name brands
[107]. Some of the concealers, foundations and mineral foundations sold
by leading brands contained 100nm particles. Some cosmetic products
also contained penetration enhancers which may help the penetration of
nanoparticles into the skin which can help nanoparticles to enter the blood-
streams and reach vital organs. Some of mineral foundations pose greater
inhalation risks due to their powdered form. Only one brand indicated the
presence of nano-particles on the product label. Such labelling should be
made compulsory so that consumers can make an informed choice before
buying cosmetic products containing nanoparticles. There are some
concerns about long term health risks of nano-cosmetics because the long-
term health risks of nanoparticles remain poorly understood. The likely
exposure in ‘real life’ conditions is also unknown. But early studies have
suggested that if exposure is high enough, nanoparticles now used by the
cosmetics industry could cause lung damage, cell toxicity, damage DNA,
and possibly even harm unborn children. In 2004, the United Kingdom’s
Royal Society, recommended that nanoparticles should be treated as new
chemicals and be subject to new safety assessments before being allowed
to be used in consumer products. Australian nano-cosmetics still largely
remain unlabelled and effectively unregulated. The Australian laws neither
ask companies to test the product safety before using nanoparticles, nor
enforce labelling of nano-ingredients [108]. Europe has passed new laws
that will require most nano-ingredients in sunscreens and cosmetics to
require safety testing and compulsory labelling. However, a lot of research
and regulations are needed to make safe and efficacious cosmetic products

containing nano-systems for consumers.
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Conclusion

Nano-systems offer a wide variety of delivery systems to develop cosmetic
products. This is to deliver cosmeceuticals actives across the skin by
various mechanisms and impart a wide variety of functions including
moisturisation, sun protection, wrinkle reduction, etc. However, toxicity
remains an issue to solve within many nano-systems. Regulatory agencies
in many countries are trying to establish some guidelines to control the
safety of cosmetics that utilises nano-systems, to protect consumers. More
international collaborative efforts between researchers as well as between
global regulatory agencies are needed to develop standard rules and
regulations of using nano-systems in cosmetics and labelling for cosmetic
companies. Then cosmetic companies can develop safe and efficacious
nano-systems and use them in cosmetic products for the benefits of
consumers, and educate consumers about the potential dangers of nano-

systems.
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