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Review Article

Abstract
Endophytic bacteria and fungi reside inside the plant without 
causing any harmful effects to the host. They have ubiquitous 
distribution within the plant and can be isolated from different parts 
by surface sterilization followed by exposing the sterilized parts 
onto nutrient medium. They have significant impact on physiology 
and metabolism of the plants. This is due to the evolutionarily 
adapted multi-potent plant growth promoting and biocontrol 
mechanisms. Because of their plant beneficial features, they have 
the promises to develop into microbial inoculants for the field 
application as biofertilizers, plant strengtheners, phytostimulators 
or biopesticides. Their exploitation offer promising environment 
friendly support for emerging organic agricultural applications 
in worldwide. This review describes the mechanisms of plant 
beneficial features shown by endophytic bacteria to provide an 
insight in to their in planta role and applications.

Key Words: Endophytic Bacteria; Plant Growth Promoting 
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Introduction
Plants are naturally associated with microorganisms in various 
ways. Bacteria which enter the plant and establish mutualistic 
association without any harm are known as endophytic bacteria 
[1, 2, 3]. Here, the host provides unique protective niche for 
the endophytic organisms, and endophytes in turn synthesise 
diverse chemical scaffolds [4,5] which mediate increased plant 
growth, development, nutrient uptake and also protect plant 
from pathogen. Bacterial endophytes are considered to enter the 
host from the surrounding soil through wounds in the roots [6] 
or through root hairs [7] and subsequently it transverse the root 
cortex and reach various plant organs through vascular system or 
through the apoplastic routes. The nature and types of endophytes 
present in the plant is depend on its source, age, tissue type, time 
of sampling and environment [8,9]. The endophytic bacteria can 
produce an array of bioactive metabolites and hydrolytic enzymes 
as adaptive strategy for endophytic association. The endophytes can 
provide protection to plant from pathogen attack in addition to its 
plant beneficial properties such as production of indole acetic acid, 
phosphate solubilization, ammonia production, ACC deaminase 
activity, nitrogen fixation and siderophore production.

History of Endophytes and their Importance
The term endophyte was first coined by De Bary [10]. Hallmann 
et al [2] have defined the endophytic bacteria as all the bacteria 

that can be detected inside the surface sterilized plant tissues or 
extracted from inside plants and having no visibly harmful effect 
on the host plants. Endophytic bacteria have been isolated from 
diverse range of monocotyledonous and dicotyledonous plants 
such as oak [11], pear [12], sugar beets and maize [13,14,15,16,17]. 
The chemicogenomic interaction between plants and endophytes 
can expect to provide protection to plants from pathogens, insects 
and grazing animals [4,18].

Endophytic bacteria with plant growth promoting (PGP) and 
biocontrol properties have applications to enhance crop yield by 
maintaining ecological balance [19]. The advantage with use of 
endophyte as a biocontrol agent is their inherent adaptation to 
live inside the plants with promises to provide reliable disease 
suppression. They can protect their host from attack by fungi, 
insect, and mammals by producing secondary metabolites [20]. The 
endophytic communities mainly include the phyla, Proteobacteria, 
Actinobacteria, Planctomycetes, Verrucomicrobia and Acidobacteria 
[21]. Bacteria of the genera Pseudomonas, Bacillus, Burkholderia, 
Stenotrophomonas, Micrococcus, Pantoea and Microbacterium 
are some of the most commonly identified bacterial endophytes 
[2,22,23,5,21]. This can be highly complex as there are more than 
300000 species of plants are present [24]. Each of these plants can 
be unique in their endophytic partners.

Endophytic Bacteria
Based on the types of microorganisms involved, the endophytes 
can be bacterial, fungal or those of actinomycetes. Bacterial 
endophytes are well characterized from  many plants which include 
Azorhizobium caulinodans from rice [25], Burkholderia pickettii 
from maize [17], Enterobacter sakazakii from soybean [26], 
Pseudomonas fluorescens, Pseudomonas putida [27] and Bacillus 
spp from citrus plants [28].
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Entry of Endophytic Bacteria in Plants
Endophytic colonization and mobility within host plants are 
mediated by several factors such as lipopolysaccharides, flagella, 
pili, and twitching motility [29,30,31]. The endophytic bacteria 
from the soil get enter into host plant through cracks formed 
in lateral root junctions followed by quick spread with in the 
intercellular spaces of the root [32]. Root cracks are recognized as 
the hot spot for bacterial colonization [33]. Some of the endophytic 
bacteria can also have the ability to colonize flowers, fruits and 
seeds but their presence was limited under natural conditions [34].

Isolation of Endophytic Bacteria
There are various methods that have been used for the isolation of 
endophytic bacteria.  Bell et al. [35] have suggested the isolation 
of endophytic bacteria from grapevine by vaccum or pressure 
extraction technique. Endophytic bacteria could be easily isolated 
by the surface sterilization method using 2% sodium hypochlorite 
followed by wash with sterilized distilled water [36,37]. This 
simplest procedure of surface sterilization can be followed by 
exposing the surface sterilized piece of the sample material onto 
specific media for outgrowth of endophytes [38,39,40]. For the 
identification of the isolated endophytic bacteria both conventional 
biochemical tests [41] and rapid method involving 16S rDNA 
sequence analysis can be used. 16S rDNA based method makes 
it possible to identify the organism up to genus and possibly to 
species level by comparing the sequence deposition in available 
databases [42]. Some of the most common genera of endophytic 
bacteria characterized from different parts of the plants include 
Acinetobavter, Acetobacter, Alkaligenes, Arthrobacter, Azospirillum, 
Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, 
Pseudomonas, Ralstonia and Serratia [43].

Mechanisms of Plant Growth Promotion
Several studies have been conducted to investigate the mechanisms 
involved in the plant growth enhancement by endophytic bacteria 
[44]. These involve direct and indirect mechanisms [45]. The direct 
mechanisms include (i) those which facilitates the acquisition of 
nutrients like nitrogen, solubilization of phosphorous and the 
sequesteration of iron (ii) which modulates plant growth through 
the production of auxin, cytokinin and ACC deaminase which 
reduce the level of ethylene. Indirect plant growth support is 
provided by the production of antibiotics, cell wall degrading 
enzymes, induced systemic resistance and the production of 
exopolysaccharides [46,47]. These mechanisms may subject to 
variation in its expression based on rhizospheric or endophytic life 
style of organisms.

Direct Mechanisms

Nitrogen Fixation: Nitrogen (N) is the most vital nutrient for plant 
growth and productivity. The atmospheric N2 is converted into 
plant-utilizable forms by the process called biological N2 fixation 
(BNF). Here nitrogen is converted to ammonia by nitrogen fixing 
microorganisms with the help of the enzyme system nitrogenase 
[48]. BNF occurs generally at mild temperature by nitrogen fixing 
microorganisms, which are widely distributed in nature [49]. 

Phosphate solubilization: Phosphate solubilization is one of the 
major mechanisms for plant growth promotion by the plant associ-
ated bacteria. Phosphorous is the second most important nutrient 
required for plants after nitrogen for their growth and develop-
ment but it exist in soil as mineral salts or incorporated into organ-
ic compounds. Plants can only absorb it in two soluble forms, the 
monobasic (H2PO4

-) and the diabasic (HPO4
2-) ions. To overcome 

this P deficiency in soils, phosphatic fertilizers are frequently ap-
plied in soils. The challenges like high cost and hazardous effect to 
the environment demand the need for economically and environ-
ment friendly methods for improving crop production even in the 
low phosphorus soils. In this context, exploring the role of bacteria 
to release immobilized phosphorous have tremendous applications 
[50]. They could convert insoluble phosphate compounds such as 
tri calcium phosphate, dicalcium phosphate, hydroxyapatite, and 
rock phosphate into available forms for plants via the process of 
chelation, exchange reaction and by the secretion of organic acids 
[51,52]. The bacterial genera Azospirillum, Azotobacter, Bacillus, 
Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, 
Microbacterium, Pseudomonas, Rhizobium and Serratia have been 
reported to have tremendous phosphate solubilizing efficiency 
[53,54]. 

IAA Production: Indole-3-acetic acid (IAA) is a phytohormone 
which is known to be involved in root initiation, plant cell division, 
extension, and differentiation. IAA also affects plant growth and 
development by stimulating seed and tuber germination, increas-
ing the rate of xylem and root development; controlling processes 
of vegetative growth, initiating lateral and adventitious root forma-
tion, mediating responses to light, gravity and fluorescence, affect-
ing photosynthesis, pigment formation, biosynthesis of various 
metabolites, and providing resistance to stressful conditions. Pro-
duction of IAA by endophytic bacteria indicates its role in modu-
lating diverse process in plant physiology. Moreover, IAA produc-
ing bacteria promote shoot and root elongation which provide 
greater access to host plant for nutrient absorption from soil [55]. 

Microbial production of IAA has been reported to take place by 
both tryptophan dependent or independent mechanisms. In 
the presence of tryptophan, microbes release greater quantities 
of IAA and related compounds [56,57]. Microbial synthesis of 
IAA occurs through pathways like indole-3-acetonitrile (IAN) 
pathway, indole-3-acetamide (IAM) pathway, tryptamine pathway, 
indole-3-acetaldoxime pathway and the indole-3-pyruvate (IPyA) 
pathway [58,59]. The indole-3-pyruvic acid pathway (IPyA 
pathway) was found to be the main route for IAA production in the 
presence of exogenous tryptophan. The first step in this pathway 
is the conversion of tryptophan into IPyA by an aminotransferase 
enzyme. Then it undergoes decarboxylation reaction to form 
indole-3-acetaldehyde (IAAld) by the enzyme indole-3-pyruvate 
decarboxylase (IPDC) and this IAAld is then oxidized to produce 
IAA. Biological significance of microbial IAA production has been 
evidenced by the presence of multiple biosynthetic routes for the 
same. Even more pathways for the same is also expected due to 
presence of multiple biosynthetic pathways in some organisms.

Several studies have demonstrated the ability of endophytic fungi 
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also to synthesise IAA with significant role in the development of 
plants. The inoculation of IAA producing endophytic Paecilomyces 
formosus on japonica rice has shown to result in increased plant 
growth with significant differences in plant height and biomass 
compared with the control [60,61]. The detection and quantification 
of IAA produced by endophytic bacteria or endophyte fungi has 
shown to be carried out by using HPLC with same experimental 
procedure [60,57].

1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activ-
ity: Ethylene is an important metabolite endogenously produced 
by all plants for the normal growth and development. Apart from 
ethylene being a plant growth regulator, it has also been known 
as a stress hormone because of its role in stress conditions like 
salinity, drought, water logging, heavy metals and pathogenicity. 
The biosynthesis of ethylene from methionine takes place in three 
steps. First, ATP and water binds to methionine which results in 
the formation of S-adenosyl methionine (SAM) with the release 
of three phosphates. It is further converted into ACC with the help 
of an enzyme 1-amino-cyclopropane-1-carboxylic acid synthase 
(ACC-synthase). Subsequently, ACC is enzymatically converted 
to ethylene. However presence of increased level of ethylene nega-
tively affects the overall plant growth and development resulting in 
reduced crop yield [62]. 

ACC deaminase is a multimeric enzyme with a molecular mass of 
35-42kDa [63, 64]. It is a sulfhydryl enzyme that utilizes pyridoxal 
5-phosphate as an essential co- factor and several aminoacids such 
as D- serine and D- cysteine as substrates. It is a sulfhydryl enzyme 
that utilizes pyridoxal 5-phosphate as an essential co-factor and 
several amino acids such as D-serine and D-cysteine as substrates. 
Mechanisms involved in the cleavage of ACC by ACC deaminase 
includes fragmentation of cyclopropane ring and deamination to 
form α-ketobutyrate and ammonia [65].

ACC deaminase produced by endophytic bacteria can have 
the potential to use ACC from plant root and convert it into 
α-ketobutyrate and ammonia. The decreased ACC level lowers 
ethylene production and minimise plant stress. Hence inoculation 
of plants with ACC deaminase producing bacteria can have 
the promises to protect plants from stress conditions. Bacterial 
strains exhibiting ACC deaminase activity have been identified 
for the genera like Acinetobacter, Achromobacter, Agrobacterium, 
Alcaligenes, Azospirillum, Bacillus, Burkholderia, Enterobacter, 
Pseudomonas, Ralstonia, Serratia and Rhizobium [66].

 Different types of endophytic bacteria isolated from various parts 
of the plant have been reported to have diverse mechanisms for 
plant growth enhancement (Table 1).

Indirect Mechanisms

Indirect mechanisms generally involve biocontrol properties. 
Plant growth promoting bacteria (PGPB) can also promote plant 
growth by protecting the plant from the deleterious pathogens. 
Mechanisms used by biocontrol organisms to control pathogens 
have potential applications to reduce the use of chemical pesticides 
in a cost effective and eco-friendly manner. 

Production of Antibiotics and Lytic Enzymes 

Plant growth promoting bacteria produce a wide range of antibiotics 
and enzymes which protect the plant from phytopathogens. 
Antibiotics are low-molecular weight, chemically distinct group 
of organic compounds mostly produced by microorganisms which 
are deleterious to the growth and metabolic activities of other 
microorganisms even at very low concentrations [91,92]. There 
are many reports on the biocontrol properties and applications of 
Pseudomonas spp. due to its abundance in the plant. Recently, more 
bacterial biocontrol agents other than Pseudomonas spp. have 
also been reported. Antibiotics produced by bacterial biocontrol 
agents include phenazines (Phz), pyrrolnitrin (PRN) and other 
lipopeptides [93,94,95,96].  

Phenazines: Phenazines are a group of nitrogen containing 
heterocyclic compounds produced by a variety of bacteria. Both 
Gram negative and Gram positive species reported to have the 
ability to synthesise phenazine which include Nocardia, Sorangium, 
Brevibacterium, Burkholderia, Erwinia, Pantoea agglomerans, Vibrio 
and Pelagiobacter  [97,98]. Among various bacteria, Pseudomonads 
have been extensively studied for phenazine compounds. In most 
of the cases, the phenazine production has been identified to be 
mediated by the core biosynthetic genes which are flanked by one 
or more genes resulting in the production of additional phenazine 
derivatives. In our previous study also, endophytic Pseudomonas 
aeruginosa with phenazine-1- carboxylic acid mediated antifungal 
activity has been reported from ginger rhizome [94].

Pyrrolnitrin: Pyrrolnitrin [3-chloro-4-(2-nitro-3- chlorophenyl) 
pyrrole] is a dichlorinated phenylpyrrole antibiotic. This was pri-
marily used as clinical antifungal agent for the treatment of skin 
infections caused by the fungus Trichophyton. Further, it was used 
as effective agricultural fungicide [99]. Pyrrolnitrin has previously 
reported as antifungal basis of Burkholderia, Enterobacter, Myxo-
coccus, Pseudomonas as well as by some Serratia sp. [100,101,102]. 
Endophytic Serratia sp. G3 from wheat was also reported to have 
antifungal activity due to the production of pyrrolnitrin, chitinase, 
and siderophore [103].

2,4-Diacetylphloroglucinol (DAPG): 2,4-diacetylphloroglucinol 
(DAPG) are major group of secondary metabolites which belong 
to the group of compounds phloroglucinol. These compounds are 
generally synthesized by species of Pseudomonads [104]. Several 
studies also reported Serratia sp. and Pseudomonas sp. to have the 
potential to biosynthesize DAPG and its role in the biocontrol of 
many phytopathogens [105,106]. DAPG is basically a polyketide 
which is synthesized by the condensation reaction of  acetyl  
CoA  with  malonyl  CoA. The genes which are included in the 
biosynthesis are phlA, phlC, phlB, phlD and phlE [107]. DAPG is 
reported to have broad range of biological activities including anti-
fungal, anti-helmenthic and herbicidal properties [104]. 

Ecomycin: Ecomycins are novel lipopeptide compounds produced 
by plant associated fluorescent bacteria called Pseudomonas 
viridiflava. This bacterium is known to exist on or within the 
tissues of leaves of Lactuca sativa and many grass species [108]. 
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There are mainly three types of ecomycin lipopeptide compounds 
have been identified and partially purified. These include ecomycin 
A, B and C. Among them, ecomycin A is structurally similar to 
the already known antibiotic syringotoxin [109,110]. Ecomycin B 
and C are novel because of their unique aminoacid composition 
[108,111,112,113]. This compound was also reported to have broad 
antifungal properties against human pathogens Cryptococcus 
neoformans and Candida albicans.

Pseudomycin: The pseudomycins are another group of antifungal 
peptides identified from plant associated bacterium Pseudomonas 

syringae. P. syringae is a member of the Pseudomonadaceae family 
and belong to the Phylum Proteobacteria. The pseudomycins are 
lipopeptides which contain non-traditional aminoacids such as 
L-chlorothreonine, L-hydroxy aspartic acid and diaminobutyric 
acid and are active against human pathogenic fungi such as Candida 
albicans and Cryptococcus neoformans as well as phytopathogens 
including Ceratocystis ulmi and Mycosphaerella fijiensis. The 
pseudomycins are also being used for the agricultural purpose to 
manage black sigatoka disease in bananas [4].

Munumbicins and Kakadumycins: Munumbicins and kakadu-

Table.1 Details of selected endophytic bacteria and their plant beneficial features

Endophytic bacteria Source Mechanisms of plant growth promotion References

Paenibacillus sp. Curcuma longa Indole-3- acetic acid production [67, 68]

Klebsiella sp. Piper nigrum, Curcuma longa ACC deaminase, phosphate solubilization, 
siderophore and IAA production. [69, 70, 71, 72]

Pseudomonas sp.
Zingiber officinale,

Elettaria cardamomum
IAA production, ACC deaminase and sidero-
phore production, antifungal activity [73, 74, 75, 76, 77, 78]

Ralstonia sp.
Musa accuminata

cv. Grand Naine

Phosphate solubilization, ammonia produc-
tion, IAA synthesis,

Nitrogen fixation, siderophore production 
and HCN production

[79, 80]

Bacillus sp. 

Capsicum annuum, Eletteria car-
damomum, Curcuma longa L

IAA production, ACC

deaminase production, phosphate solubiliza-
tion and siderophore, production, antifungal 
activity

[75, 81, 82, 83]

Pantoea sp. Eletteria cardamomum ACC deaminase production [75]

Stenotrophomonas sp. Datura metel IAA Production, phosphate solubilization [84]

Agrobacterium sp. Solanum lycopersicum IAA production, ACC deaminase, phosphate 
solubilization,  siderophore production [76]

Rhizobium sp. Solanum lycopersicum IAA production, ACC deaminase, phosphate 
solubilization,  siderophore production [76]

Burkholderia sp.

Burkholderia australis
Vitis vinifera L., Saccharum of-
ficinarum x spontaneum L.

Phosphate solubilization, IAA production, 
siderophore production, nitrogen fixation [85,86]

Novosphingobium sediminicola, 
Ochrobactrum intermedium, 
Gluconacetobacter diazotrophicus, 
Herbaspirillum seropedicae, H. 
rubrisub albicans and Burkholderia sp.

Saccharum officinarum L. Nitrogen fixation [87,88]

Azospirillum 

Amazonense, Rhodopseudomonas 
palustris, Pantoea ananas, Klebsiella 
oxytoca, Cytophagales sp., Flavobac-
terium gleum

0ryza sativa, 0ryza Alta and 
0ryza. ridleyi Nitrogen fixation, IAA production [89]

Sphingomonas paucimobilis, 
Bacillus megaterium, Pantoea sp., 
Enterobacter ludwigii

Pennisetum purpureum 
Schumach

IAA production, ACC deaminase

Activity, nitrogen fixation, ammonia

production, siderophore production

inorganic phosphate solubilization.

[90]
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mycins are peptide antibiotics produced by endophytic Streptomy-
ces sp. NRRL 30562 and 30566 respectively. These compounds are 
active against broad range of bacteria such as Bacillus anthracis, 
Streptococcus pneumoniae, Enterococcus faecalis, Staphylococcus 
aureus and also active against multiple-drug-resistant (MDR) My-
cobacterium tuberculosis. Munumbicins E-4 and E-5 and kakadu-
mycin A were also found to have activity against Plasmodium falci-
parum and it was found to have more antimalarial activity than the 
reported chloroquine [114,115].

Other lipopeptides: Lipopeptides are major antimicrobial 
compounds secreted by Bacillus spp. The antifungal lipopeptides 
are grouped under iturins and fengycins. Antibiotics that belong to 
the family iturin are basically cyclic lipopeptides such as iturin A, 
mycosubtilin, bacillomycin etc. and are one of the most commonly 
studied compounds produced from Bacillus spp. with promising 
for their promising antifungal activities [116,117,96]. These are 
small molecular weight compounds with a mass of 1.1 kDa and 
consists of a cyclic peptide with 7 amino acid residues and 11-12 
carbons atoms at their hydrophobic tail. Due to this structure, the 
compound exhibits strong amphiphilic nature and thus have high 
probability to act on target cellular membranes [118].  Biosynthesis 
of iturins was mostly studied in Bacillus sp. where it consists of an 
operon with four open reading frames ItuA, ItuB, ItuC, and ItuD 
[119]. Iturin A specifically shows a strong and broad spectrum 
antibiotic activity and have the potential to reduce the use of 
chemical pesticides in agriculture [120].  The fengycin family 
comprises fengycin A and fengycin B, which differ in a single amino 
acid in the sixth position (d-alanine and d-valine respectively). 
Their production was reported from the endophytic bacterium 
B. amyloliquefaciens ES-2 [121]  and B. subtilis B-FS01 [122]. 
Evaluation of the antifungal activity of the isolated lipopeptides 
obtained from endophytic Bacillus subtilis showed fengycins to 
have promising activity [123].

Growth enhancement through the production of cell wall 
degrading enzymes is another mechanism used by plant growth 
promoting bacteria to control soil borne pathogens [124]. Certain 
enzymes produced by the PGPB like β-1, 3-glucanase, chitinase, 
cellulase, and protease inhibit the growth of fungal pathogens by 
the degradation of the cell wall. PGPB with one or more of these 
enzymes have been found to have biocontrol activity against a 
range of pathogenic fungi including Botrytis cinerea, Sclerotium 
rolfsii, Fusarium oxysporum, Phytophthora spp., Rhizoctonia solani, 
and Pythium ultimum. The studies on the biocontrol property of 
S. marcescens B2 against the soilborne pathogens R. solani and F. 
oxysporum have been reported as due to the production of the 
chitinolytic enzyme [125]. 

Sequestering of Iron: Iron (Fe) is the most abundant element on 
earth which cannot be readily assimilated by either bacteria or 
plants because of its nature of existence as ferric ion (Fe+3). Both 
microorganisms and plants require a higher level of iron which 
makes the plant, bacteria and fungi to compete for iron [126]. This 
limitation has been overcome by some bacteria by synthesizing low-
molecular weight compounds (400–1500 Da) called siderophores. 

These siderophores binds with ferric ion and make siderophore-
ferric ion complex which subsequently binds with membrane 
receptors at the bacterial cell surface and facilitates the uptake 
of iron by microorganisms. Plant growth enhancement with the 
help of bacterial siderophores  have been studied  extensively 
and it showed effect of siderophore producing microorganisms 
on increased iron inside plant tissues leading to improved plant 
growth. And there are over 500 known types of siderophores with 
different chemical structures and can be mainly classified into 3 
main groups like catecholates (phenolates), hydroxamates and 
carboxylates. 

Induced Systemic Resistance: Induced systemic resistance is 
the physiological state of enhanced defensive capacity elicited 
by the plant in response to specific environmental stimuli or by 
the subsequent biotic stresses. Priming of plants with potential 
organisms can enhance innate defenses against a broad range of plant 
pathogens. Many bacterial components can affect induced systemic 
resistance such as lipopolysaccharides (LPS), flagella, siderophores, 
cyclic lipopeptides, 2, 4-diacetylphloroglucinol, homoserine 
lactones, and volatiles like, acetoin and 2, 3-butanediol etc.

Exo polysaccharide Production: Certain PGPB can have the 
ability to synthesize exopolysaccharides (EPS). These provide plant 
growth and development by facilitating the circulation of nutrients 
and also protecting the plant from pathogen attack. Other functions 
performed by EPS producing microbes constitute shielding from 
desiccation, protection against drought, attachment to surfaces, 
plant invasion defense response in plant-microbe interactions.

In addition to these bacteria, endophytic fungi have also been 
reported to have several beneficial effects on the plant growth and 
disease protection which include protection from phytopathogens 
and enhancement of plant yield through the production of 
phytohormones like auxins and gibberrillins to increase metabolic 
activity of the plant [127]. Aureobasidium sp. BSS6 and Preussia 
sp. BSL10 isolated from Boswellia sacra showed higher potential 
for indole acetic acid production both by tryptophan-dependent 
and independent pathways. In vivo evaluation of plant growth 
enhancement effect of Preussia sp. BSL10 on B. sacra tree showed 
significant improvement in plant growth parameters and the 
deposition of photosynthetic pigments [128]. Some endophytic 
fungi would able to produce different bioactive compounds such 
as alkaloids, diterpenes, flavonoids, and isoflavonoids to protect 
plant from biotic and abiotic stresses [129,130]. Plant growth-
promoting ability of endophytic fungi isolated from Rosa rugosa, 
Camellia japonica, Delonix regia, Dianthus caryophyllus and Rosa 
hybrid collected from Yunnan, Southwest China showed its ability 
to improve the host plants growth more efficiently [131].

Applications of Endophytic Bacteria 
The production of natural products by endophytic bacteria 
make it an important source in the development of products 
for various plant diseases. Molecules derived from natural 
products, particularly those produced by plant and microbes 
have a great potential for the development of new pharmaceutical 
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products also. This can be achieved by the discovery of plethora 
of endophytes (both fungi and bacteria) with broad spectrum 
activities. So  studies  on  endophytic  microorganisms  from  
diverse  plants  is  important. Endophytic microorganisms also 
have great contribution in production of anti-diabetic [132], 
anti-cancerous [4], antiviral [133] and even immunosuppressive 
compounds [134]. Endophytic bacteria include a wide range 
of antimicrobial producing strains, which make it as a potential 
source of antimicrobial substances [135]. Endophytic bacteria can 
also be used for biocontrol purpose because of their well known 
capability to produce bioactive compounds like surfactin, fengycin, 
iturin, pyroluetrin etc. [136]. They have the promises for field 
application as biofertilizers, phytostimulators or as biopescticides. 
Screening for plant growth promoting and antagonistic properties 
of bacterial endophytes isolated from potato (Solanum tuberosum 
L.) have shown their ability to enhance biomass yield of Phaseolus 
vulgaris L and was found to have protective effect against potato 
pathogens Pectobacterium atrosepticum, Fusarium sambucinum 
and Clavibacter michiganensis subsp. epedonicus [137]. The 
endophytic Pseudomonas fluorescens ALEB7B isolated from A. 
lancea have been reported to have the ability to produce nitrogenous 
volatiles like formamide and N,N-dimethyl-formamide with 
significant growth promotion on A. lancea. Moreover, the main 
bacterial volatile benzaldehyde significantly promoted volatile oil 
accumulation in A. lancea by activating plant defense responses 
and thereby enhancing the plant growth and development [138]. 
Several commercially available microbial products from diverse 
sources as explained in Table. 2, indicate promises of endophytes 
also for such applications.

Conclusion and Perspectives
From the emerging understanding on endophytic bacteria, they 
can consider to have immense promises in the new generation 

Table.2 Representatives of microbial inoculants introduced as agricultural products 

Organism Product name Company

Pseudomonas Abtech Pseudo, abtech Pseudochitinase, 
PSEUDO-GUN, Salavida, Proradix ABTECH, Maharashtra Bio Fertilizers, India PVT.LTD, Sourcon Padena

Bacillus spp. Abtech Bacillus, YiedShield ABTECH, Bayer Crop Science

Azospirillum Abtech Azospirillum, AZOSPIRILLUM, 
AZOGREEN, Biopromoter

ABTECH, Maharashtra Bio Fertilizers, India PVT.LTD, Omega Ecotech 
Products India Private Limited, Manidharma

Biotech

Rhizobium
Abtech Rhizobium,

RHIZOBIUM
ABTECH, Maharashtra Bio Fertilizers, India PVT.LTD

Phosphobacteria Abtech Phosphobacteria ABTECH

Azotobacter AZOTOBACTER Maharashtra Bio Fertilizers, India PVT.LTD

Acetobacter ACETOBACTER Maharashtra Bio Fertilizers, India PVT.LTD

Trichoderma viridae Green Light Green life Biotech Laboratory

Serratia plymuthcia HRO-C48 RhizoStar

Prophyta

Biologischer

Pflanzenschutz

agricultural practices. From the available information on plant 
beneficial mechanisms of these organisms they can consider 
to have a heavy deposition of yet to known mechanisms with 
determining effect for plant growth and development. This also 
involves mechanisms with promises in their biocontrol application.  
Hence a detailed insight into plant endophytic interactions can 
have promising applications.
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