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Research

Abstract
Metabolic disorders, such as type 2 diabetes and atherosclerosis form 
a cluster of different conditions caused and mediated by complex 
multi-molecular interactions. The presence of metabolic syndrome 
(MetS) is reported to predispose an individual to drug-induced 
liver injury (DILI), from drugs such as acetaminophen, halothane, 
statin. However, the molecular mechanisms behind this are not 
yet understood. We have previously reported on the development 
of a cellular dynamic systems model of integrated carbohydrate, 
glutathione and fat metabolism in the rat liver. We have now 
modified the network with altered signaling and flux distributions 
of processes involved in carbohydrate and fat metabolism to create 
the liver physiology observed in metabolic syndrome. Triglyceride 
content in MetS liver is predicted to be 3- fold higher than normal 
individual. Our aim is to compare the impact of known drugs 
in the normal and metabolic syndrome liver by computationally 
perturbing appropriate processes, representing the effect of a drug 
to varying degrees. We have observed that a set of perturbations 
seemed to make the MetS liver more susceptible to certain forms of 
DILI. TMX treatment is predicted to increase cellular triglyceride 
by 6-fold in MetS individual.  From this observation we generated 
a set of hypotheses for increased susceptibility to DILI under 
the influence of metabolic syndrome that can subsequently be 
experimentally proved. Thus, our approach allows one to identify 
susceptible patient groups in metabolic syndrome along with drug 
targets leading to an increased risk for DILI.

Key Words: Modeling; Metabolic Syndrome; Liver; DILI; Homeo-
stasis; In silico

Introduction
The incidence of metabolic syndrome (MetS) in the developed world 
has been increasing over the last 10-15 years [1]. The Third Report 
of National Cholesterol Education Program (Adult Treatment 
Panel III; ATPIII) provides a working definition of MetS, a complex 
multifactorial disease, [2] based on a combination of 5 categorical 
risk factors: central obesity, hypertension, hypertriglyceridemia 
low levels of HDL cholesterol, and hyperglycemia. The processes 
that lead to MetS have not been clearly understood at a molecular 
level. It has been envisaged in published literature that dysfunctions 

in processes in hepatic fat and carbohydrate metabolism can 
culminate in MetS. The dysfunction can result from either altered 
nutritional states (environmental effect) or differences in genetic 
susceptibility leading to the five risk factors that are hallmarks of 
MetS.

The liver is the major organ involved in fat and carbohydrate 
metabolisms. Precursor elements from an individual’s diet enter 
the liver from the intestine in the form of either free fatty acids 
or chylomicrons. After being metabolized inside the liver, fat and 
cholesterol are transported into the circulation as lipoproteins. 
Lipoprotein turnover by the respective plasma lipases forms the 
fat precursors delivered to various peripheral tissues including the 
liver. Dietary carbohydrate enters the liver in the form of precursor 
molecules such as glucose and fructose. Carbohydrate is stored in 
the form of glycogen (glycogenesis) and fat is stored in the form of 
triglyceride (TG) inside the liver. During starvation or any other 
adverse condition blocking glucose entry into the system, the 
liver supplies glucose to the whole body by glycogen break down 
(glycogenolysis) and by gluconeogenesis.

The liver is the primary organ dealing with xenobiotic load in the 
body. Any foreign chemical is metabolized in the liver primarily 
by a family of cytochrome P450 enzymes and made ready for 
excretion.  As a result of this metabolism, it is the primary organ 
affected by drug or drug-metabolite mediated toxicity [3,4]. DILI 
prediction is still a major challenge for the pharmaceutical industry 
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making it a major cause of drug withdrawal from the market. 
Among the three major forms of DILI, namely cholestasis, steatosis 
and cytotoxicity, steatosis resembles the MetS phenotype due to the 
abnormal processing of hepatic fat and carbohydrate leading to TG 
accumulation and fatty liver formation. Many processes linked to 
altered lipid metabolism are associated with the MetS condition, 
like cardiovascular disease, obesity and insulin resistance [5]. 
Hence, an increasing concern is whether MetS individuals are 
more prone to some forms of DILI compared to normal individuals 
[6]. Published literature reports the association of liver toxicity 
induced by drugs like tamoxifen (TMX) [7], halothane [8,9], 
acetaminophen [10,11] with obesity. An integrated analysis of fat 
and carbohydrate metabolism may offer a better understanding of 
the nature of compounds as well as their targets in causing steatosis 
in normal and MetS individuals.

We have studied the drug-induced hepatotoxicity problem, by 
analyzing perturbations of the metabolic network in the liver 
mathematically. The model network encompasses fat, carbohydrate, 
glutathione and bile acid metabolism. We have previously described 
the ability of the model to predict experimentally observed DILI 
[12]. In the present study we have extended the model to describe 
the altered homeostasis of the liver under metabolic syndrome. 
We have simulated the impact of drugs on the normal and MetS 
livers and compared our predictions with experimental outcomes. 
We have also been able to predict that the liver under metabolic 
syndrome is more prone to drug-induced steatosis compared to 
a normal liver. Simulations also led us to develop hypotheses for 
types of idiosyncratic toxicity that may be observed in a MetS 
individual. 

Methods and Model
Software

The model building and simulations were executed using the 
software tool Syngene SysBioTM.

Model Structure

The aim of this study is to create a version of the model that enables 
us to represent the phenotype of the liver (in the context of key 
metabolites relevant to the present study) observed in metabolic 
syndrome and use this adapted version to characterize the impact 
of drugs on the liver in MetS individuals. To do so, we modify the 
existing liver model that represents basal homeostasis to represent 
qualitative and quantitative phenotypic changes observed in MetS. 
This is followed by simulations to represent the effect of drugs in 
both the normal and metabolic syndrome model and comparing 
the results. Finally, we have generated hypotheses that may explain 
forms of idiosyncratic toxicity observed in MetS individuals.

Model Description

A detailed description of the normal liver model including the 
differential equations and the associated parameter values is 
provided in our earlier publication [12]. In addition to glycolysis, 
gluconeogenesis, TCA cycle, oxidative phosphorylation (partially), 
de novo lipogenesis, esterification and betaoxidation of fatty acids 
that were part of the earlier version of the model, some additional 

processes like cholesterol metabolism, TG metabolism, VLDL 
assembly and secretion into the plasma, plasma lipoprotein 
turnover (VLDL, LDL and HDL) are modeled as well in the present 
version (Figure 1).

For each of the metabolites associated with the processes described 
in Figure 1, we created differential equations that quantitatively 
describe their rates of formation and consumption. We then 
linked them to the earlier model to create a more advanced version 
including additional features of liver biology. 

Converting A Normal Liver To Represent MetS:

JCR:LA-corpulent rat is the experimental model that is typically 
used to study the altered biology behind metabolic syndrome [13, 
14].

In this animal model, the following processes have been observed 
to be altered:

•	 Transporter mediated fatty acid uptake by liver [15]

•	De novo lipogenesis [16,17]

•	 Turnover of plasma lipoproteins [18]

•	 Re-uptake of plasma lipoprotein by liver [18] 

•	 Pentose phosphate pathway [19]

•	Oxidative phosphorylation and oxidative stress [20-22]

Based on the above-mentioned observations, we altered the 
respective processes in our homeostasis model. These changes 
were implemented by altering enzyme activity levels as shown in 
Table 1 to bring about the corresponding changes in the observed 
processes.

Figure1: Biological processes connected quantitatively in the metabolic 
network in silico.
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Simulations were performed using the altered parameter values to 
generate a new homeostasis that represents the liver metabolism in 
metabolic syndrome. Simulated concentration of key metabolites 
and processes were compared with literature observations.

Mimicking the Effect of Tamoxifen:

We represented the biological effects of tamoxifen in the liver 
[7,23,24] by the alterations in the enzymes fluxes listed in Table 2.

The impact of tamoxifen on the alterations of key metabolites is 
presented in the results section.

Idiosyncratic DILI in MetS:

Alterations in mitochondrial function are predicted to be associ-
ated with susceptibility to idiosyncratic DILI [25]. Idiosyncratic 
abnormalities in the expression of superoxide dismutase (SOD) are 
linked to hepatotoxicity induced by the antidiabetic drug trogli-
tazone [26-28]. Idiosyncratic toxicity associated with reduced ex-
pression of complex I has been reported for many diseases [29,30].

As a case study of idiosyncrasy, we have selected complex I of the 
electron transport chain as a target and reduced its activity over a 
range (starting with normal [0%] to 50% inhibition) to simulate 
varying drug effects on complex I efficiency leading to differing 
outcomes of mitochondrial damage. The effect of perturbed 
complex I activity has been simulated in the background of both 
the normal liver as well as the MetS liver. The impact on cytotoxicity 
is compared between the normal and the MetS individual and 
assessments are made on the propensity of the normal versus the 
MetS individual to mitochondrial mediated cytotoxic damage.

Results
The Liver Phenotype Under Metabolic Syndrome

Table 3 compares the model-simulated changes in the TG 
metabolism under MetS condition with experimental observations. 
The model-simulated homeostatic value for cellular TG under 
MetS compares well with what has been reported in the literature 
[16,31]. Simulations predict approximately a three-fold increase in 
cellular TG under MetS condition, which is similar to what has 
been observed experimentally [16]. Our predictions indicate that 
extracellular accumulation of fatty acids (high plasma fatty acid 
concentration) under metabolic syndrome can be attributed to 
enhanced intrahepatic TG content partially and eventually to the 
enhanced rate of TG secretion via VLDL. The model-simulated 
increase in TG secretion also correlates well with experimental 
evidence [31]. Increased TG synthesized by the hepatocytes due 
to the abnormal fat metabolism associated with MetS did not only 
accumulate inside the cell but was also secreted out in the form of 
VLDL.

Simulations to Predict Susceptibility to DILI:

Case Study I – Effect Of Tamoxifen: Anticancer drug tamoxifen 
(TMX) treatment is associated with increased risk of developing 
fatty liver [32,33]. Our model simulation suggests a possible 
mechanism behind the enhanced risk of TMX induced fatty liver 
on overweight and obese animals with metabolic syndrome. TMX 
is reported to alter many enzymes (listed in Table 2) involved in the 

metabolism of fat and carbohydrate in the liver [7,23,34].

We have simulated the effect of TMX on the normal and MetS liver 
using the altered parameter values listed in Table 2. Figures 2 and 
3 show the results of these simulations. Our simulations predict 
that TMX causes approximately a 6-fold increase in intracellular 
TG in MetS individuals compared to ~2- fold increase in normal 
(Figure 2). The abnormal fat metabolism leading to enhanced TG 
formation in MetS individuals is exacerbated by the inhibition of 
TG secretion by TMX (Figure 3). The combination of increased 
production and reduced secretion leads to accumulation of TG in 
the liver for MetS individuals due to TMX treatment.

Figure 2: Simulated TG level due to TMX treatment in normal and MetS 
individual.

Figure 3: Simulation predicted reduction in VLDL-TG secretion from MetS 
liver when treated with TMX.

Case Study II – The Role Of Mitochondria In Idiosyncratic DILI: 
Mitochondria are commonly involved in the toxicity of many drugs 
and xenobiotics. It has been estimated that more than 50 million 
adults in the US suffer from mitochondrial dysfunction induced 
disease [25]. One of the causes of cytotoxic liver damage can be 
attributed to drug-induced inhibition of mitochondrial function 
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leading to cellular ATP depletion. Reduced complex I activity can 
enhance depletion of cellular ATP when the mitochondria become 
a toxic drug target leading to necrotic cell death. Individuals 
with an inherently compromised complex I activity may be more 
susceptible to drugs that target mitochondrial functions [25].

Due to the inhibition of oxidative phosphorylation, disruption in 
mitochondrial ATP generation appears to be a common cause of 
lethal cytotoxic cell injury [35]. In the MetS liver, complex I activity 
is already compromised (Table 1). Simulations (Figure 4) show 
that the extent of cytotoxic damage due to mitochondrial complex 
I inhibition (by the same magnitude) is more pronounced for a 
MetS liver than a normal liver in causing depletion of cellular ATP.

While a 50% inhibition in complex I activity in normal individuals 
leads to only a 7% change in intracellular ATP, under MetS condition, 
the reduction in ATP level is >75% (Figure 4). This implies that the 
impact of ATP depletion and the associated cytotoxic damage is 
more pronounced for a liver under metabolic syndrome. Cytotoxic 
damage due to ATP depletion is predicted to be ~7 fold higher for 
MetS liver and largely unchanged for a normal liver.

Discussion
The aim of the present study is to develop a generalized predictive 
platform to understand the intracellular mechanisms that drive the 
phenotype of a complex disease, such as MetS, and how a diseased 

Table 1: List of altered parameters to represent liver in metabolic syndrome

Flux/ metabolite changed Altered parameter in the model Fold change of altered parameter

Plasma fatty acid uptake rate Vmax of the fatty acid uptake transporter CD36 2

Glucose uptake rate Vmax of the glucose uptake transporter GLUT 2 1.4

Rate of ApoB synthesis Rate constant 1.5

VLDL turnover to LDL Rate constant 0.5

VLDL cholesterol uptake Rate constant of the cholesterol uptake transporter pres-
ent on cell surface 0.5

AcetylCoA carboxylase (ACC) Vmax 1.5

Diacylglycerol acyltransferase (DGAT) Vmax 1.5

 Diacylglycerol cholinephosphotransferase (DCPT) Vmax 0.5

CTP: phosphoethanolamine cytidylyltransferase 
(EDT) Vmax 0.5

Glucose-6-phosphate dehydrogenase (G6PDH) Vmax 0.5

Glyceraldehyde-3-phosphate dehydrogenase 
(GPDH) Vmax 0.5

Complex 1 of ETC (electron transport chain) Concentration of complex I 0.6

Reactive oxygen species (ROS) production Vmax 1.5

Glutathione reductase (GR) Vmax 1.5

Microsomal triglyceride transfer protein (MTTP) Vmax 1.5

Fatty acyl synthase (FAS) Vmax 1.5

Glycerol-3- phosphate acyltransferase (GPAT) Vmax 1.5

Plasma glucose Concentration 1.25

Plasma palmitate Concentration 5

Figure 4: Reduction in cellular ATP content is more pronounced in MetS 
individual when mitochondrial function is perturbed due to secondary 
insult. 

background may have an impact on DILI predisposition.

Towards this end we have developed an in silico model of liver 
metabolism that allows researchers to perform testing using bio 
simulations. We started from our model of normal liver function 
[12] and then altered the fluxes in processes known to be affected 
(Table 1) in MetS to create a disease-specific model. The model-
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simulated intracellular metabolite concentrations for the normal 
and MetS liver are very similar to the reported experimental 
observations [7]. Our simulations indicate that an obese 
individual with MetS phenotype is more prone to suffer TMX- 
induced steatosis compared to a non-MetS counterpart. This is in 
concordance with clinical observations that obese cancer patients 
treated with TMX tend to develop steatosis at a faster rate [23]. 
Model simulations also reveal that reduced TG secretion due to the 
presence of TMX compared with the increased influx of plasma 
fatty acids and de novo lipogenesis in MetS individuals lead to a 
large increase in intracellular TG in these individuals compared 
with normal.

Our liver model has been used to hypothesize that there may be 
forms of DILI idiosyncratic for MetS individuals alone. Hence, this 
type of systems model can be used to predict the involvement of 
associated idiosyncratic aberrations as well. While we have focused 
on MetS in this study, other complex diseases like cardiovascular 
diseases, diabetes, NASH (non-alcoholic steatohepatitis) and how 
they impact DILI can also be understood using a systems modeling 
approach. In this context, expert opinion made by Teschke et.al 
[36] based on available case reports clarifies that pre-existing and 
non-cirrhotic chronic liver diseases may make the liver prone to 
DILI by some but not all drugs. Due to the unavailability of a gold 
standard as clinical diagnostic marker for DILI assessment, the  
use of RUCAM, the Roussel Uclaf Causality Assessment Method, 
is advised to diagnose an individual’s DILI [37].

The conventional animal model for MetS is corpulent (JCR:LA-
cp) rat [13,38], which is studied either at the whole animal level or 
in vitro with hepatocytes derived from the diseased animal. There 
are several drawbacks behind these conventional approaches, 
including (1) difficulties in direct extrapolation of results, and 
(2) long and involved experimentation etc; in addition, lack of 
mechanistic insight making the understanding of idiosyncratic 
toxicity difficult if not infeasible. 

Figure 4 shows a simulation representing the impact of a drug 
that affects mitochondrial complex I in normal and MetS patients. 
It has been observed that a 30-40% inhibition of complex I in 

the MetS individual leads to more severe cytotoxic cell death 
associated with profound ATP depletion when compared with 
normal counterparts. It can be hypothesized that a patient whose 
mitochondria are compromised to begin with [39], have a greater 
potential for necrotic DILI when they also have a concomitant 
MetS condition. Thus, our computational approach allows one to 
test multifactorial combinations of effects, genetic variations, drug 
(environmental) insults and physiological status to understand the 
molecular basis of drug-induced liver injury.

Our systems model, with its mechanistic description of metabolic 
fluxes, allows us to simulate the response of the liver metabolic 
network to changes of environmental conditions (drugs) - and 
cellular processes, e.g. altered gene expression. We started with a 
normal liver and re-parameterized it to create one representing 
MetS. This approach is general enough to apply to other individual 
level changes representing hypotheses for idiosyncratic behavior or 
system level changes representing altered states of disease or health 
(such as diabetes). Since each biosimulation provides mechanistic 
insights, it is possible to use such simulations to design experiments 
to verify biological hypotheses. For example, possible involvement 
of mitochondria in idiosyncratic DILI has been demonstrated by 
the model. Targeted experiments can now be designed to verify 
whether such a mechanism is responsible for a subpopulation of 
idiosyncratic responders, segregated based on various features 
of the idiosyncratic response, such as liver enzyme levels, VLDL 
levels, etc.

This approach can be considered extremely useful to reduce animal 
experimentation. Over 100 million animals are used every year in 
laboratory experiments worldwide Alternatives to animal use are 
being considered actively in many centers [40]. However, there 
is an inherent challenge in how to translate their results to the in 
vivo situation. In addition, toxicity responses in animals may only 
poorly correlate to the human organism. Our approach provides an 
alternative that is less time consuming and allows one to integrate 
information and insights from laboratory experimentation, both 
in vitro and in vivo to predict toxicity and ascertain a mechanistic 
assessment of risk.

Table 2: List of altered parameters to mimic effect of tamoxifen

Flux Altered parameter Fold change to mimic tamoxifen treatment

LDL- receptor activity Vmax of LDL uptake receptor 1.5

AcetylCoA carboxylase (ACC) Vmax 0.5

Diacylglycerol acyltransferase (DGAT) Vmax 2.0

Microsomal triglyceride transfer protein (MTTP) Vmax 0.5

Fatty acyl synthase (FAS) Vmax 0.6

Table 3: Differences in homeostasis in the normal and MetS liver

Metabolites/fluxes Simulated value Experimental value

Change in cellular triglyceride (MetS/Normal) 3.25 3.0

Change in rate of triglyceride secretion (MetS/Normal) ~ 3 3-4
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